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0. Introduction

The approximation of partial differential equations by the finite element or

finite difference methods often leads to large sparse linear systems.

Traditionally, one employs basic iterative methods to solve them. However,

basic iterative methods exhibits slow convergence if the meshsize is small.

This is due to the fact that basic iterative methods can not damp out low

frequency modes of the errors. To remedy this disadvantage, multigrid methods

combine basic iterative methods with other methods that are complementary.

One of the reasons that accounts for the effectiveness of multigrid methods

seems to be the idea of approximating the solution of a large system from a

subspace wi,ose dinension is small. Finding such a subspace is by no means an

easy task. In this report we investigate the residual based reduced basis method

(RRBM) for solving large sparse symmetric positive definite systems. In a

sense, it belongs to the class of two-grid methods, although no geometric grids

are involved. The outline of this report is as follows. Section 1 is devoted to

the convergence behavior of general projection processes. A generic bound is

provided for a class of pseudoresidual-based projection processes. In Section 2,

we give mild conditions that ensure the convergence of general additive

correction procedures. In Section 3, we describe the RRBM and prove a

convergence theorem for it. Section 4 is devoted to the practical

implementation of the RRBM. In Section 5 we relate the RRBM to the

preconditioned conjugate gradient method under a certain condition. It is shown

that the RRBM is more flexible than the preconditioned conjugate gradient

method. In Section 6 we extend some of the previous results to the case of

nonsymmetric linear systems having positive definite symmetric part. A rather

general convergence analysis is given there. Finally, Section 7 is devoted to the

weight selection principle for the linear convective equation in Rn. The

principle is based on the ability of hybrid difference methods to conserve th,

d te weighted energy.
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I . Additive Correction Scheme

Let A be a symmetric positive definite (SPD) matrix of order n.

Consider the linear system of equations

Au = b. (1.1)

The general additive correction scheme for solving (1.1) can be described as

follows.

ALGORITHM 1: Let u( 0 ) be given. Choose a fixed integer v. For

k 2,2.... do

Step 1. Initialization:
w (0) = u(k)

k

Step 2. Presmoothing:

wW = Gw(J 1 ]k + 0-1 b. j = 1,2....u. (I.2a)

Step 3. Defect Computation:

d() b - Aw(uv) A(u - w(u)) a (v). 01.2b)
k k k k

Step 4. Additive Correction:

u(k+l)= W'() +ER (1.2c)

where e is a computationally inexpensive approximation of F(U k)

Some remarks are in order. Steps 1 and 2 in the above algorithm consists

of the usual basic iterative method with the iteration matrix G and the

splitting matrix 0. It is well known that basic iterative methods applied to

the linear systems arising from discretization of partial differential equations

are not effective once the high frequency modes have been damped out. Hence one

stops after a certain number of steps of the basic iterative method. At

this juncture. te error (V) will lie mainly in the subspace of low
k

frequency modes. Intuitively, this means the error e) can be well
k

approximated oy soling an approximating system of the linear system (1.2b) in
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a smaller subspace. The solution eR (R for 'reduced') is then added to wkU)

The success of Algorithm I depends whether one can judiciously choose the

above-mentioned subspace. In this report we confine ourselves to projection

processes in which eR is the projection of (U) onto a certain subspace.

R k

We now study the effects of steps 3 and 4.

Let w be an approximation of the solution u to the system (1.1). Let

S = [sl,s5.5...sm be a full rank matrix consisting of column vectors si,

I < i < m. The following describes how to get a new approximation " from

W.

Galerkin ADproximation

d - b - Aw = Au- Aw = Ae. (1.3a)

Find e E Rg(S) the column space of S such that

sT(d -AE R) : 0. (1.3b)

u=w+ W * .  (1.3c)

The above is equivalent to

R = s(s AS) STAe' (1.4a)

e u e -eR = e - s(STAS)-STAe. (1.4b)

Let (x,y) E = xTAy, the energy product associated with the matrix A. It is

easy to see that PS S(STAS)'lSTA is the orthogonal projector onto Rg(S).

Let 11.IIE be the energy norm induced by (',')E. Then from (1.4b) we have

1191l E  = 1(1 - P S)ell E  = min lie - zlE (1.5a)
Ze Rg(S E(

or

iiu - uti E  = min iiv - uiu. (1.5b)
VeW+Rg(S)

It is known that if Rg(S) = K(m)(d,A) a Span{d,Ad,....A(m-1)dl, then (1.5a)

results in 3 bound involving a Chebyshev polynomial of the first kind. That is



eU E T (1 nea E'
m (b +a)

where Tm is the Chebyshev polynomial of degree m and [a,b] is the smallest

interval containing the spectrum of the matrix A. Note that the conjugate

gradient method falls into this category. We prove below tha. a ge, erk.

inequality exists for all projection processes (1.4) if d E Rg(S).

LEMMA 1.1 (Lemma 3.1, D. Braess, 19811 Let the Hilbert space U be a

direct sum of its subspaces V and W. Assume that there is a t < 1 such

that a strengthened Cauchy inequality holds:

I (v.w) I < '1IIvlWl,, v E V, wE W.

If PWu = 0, then

IlU - PVuII < rilluIl.

Here PW and PV are orthogonal projectors to W and V, respectively.

THEOREM 1.1. Let e and e be as in (1.4). Assume that the defect

d E Rg(S). Then
11ie1 < eA) - e (1 .6)

E k(A) I 1 E

where k(A) = IIAiI 2 iiA- 1 112 and .112 = the 2-norm of A.

Proof. We set various spaces corresponding to Lemma 1.1 as follows.

U = Rn endowed with the energy product,

V = Rg(S), W = Rg-(S) = the orthogonal complement

of V with respect to the Euclidean inner product.

Obviously,
Rn = V ) W.

Furthermore, Pwe = 0 since Ae = d. Also, PV = S(STAS)-ISTA. The constant

i in Lemma 1.1 can be determined as follows. For v e V and w e W.



Nv. w) E vTA w

:vTAw -o~vTW Vol >0

=VT(A - o41)W

=(A1 /2V)T (A'' 2 (A - aI)A'"/2)Al/ 2 w.

Hence

(v.W)E I :S 11 vl E 11Iw 1IE 11l - O(A1 112.

Let 0 < X11~ X2 < .. < be the eigenvalues of A. Now

6Smin iI - o4A- il12
oi>0

= min max I i - d)X C (A 1') =the spectrum ofA-

0'>O

Xn 1
Xn +1

=(k (A) - 1 )/(k(A) + 1).

The conclusion of the theorem then follows easily by noting that
e 0 C - PV)e.

QED.

We remark that Theorem 1 .1 covers the steepest descent method and the
conjugate gradient method. Inequality (1.6) for the steepest descent method is
usually derived from Kantorovich inequality (see, e.g. Luenberger. 1984).

Theorem 1.1 can be generalized as follows.

THEOREM 1.2. Let g and e be as in (1.4). Assume that d E Rg(S). Let
C be a SPO matrix such that C(Rg(S)) C Rg(S). Then

III k(C 1 / 2 AC 1 /21 - i1
IelE <k(C1 1/ 2 AC-1 / 2 ) + 1 illE

Proo f. The corresponding subspaces are the same as in Theorem 1.1. The

only detail changed is the choice of a%. Let v E V and W E W. Then



(v'w) E=w TAv

" WTAv -o~wTCV O v> 0

" WT (A - o(C).
As before, we have

I (vW)E I :S ItIW11E 1 II ~E 111 - &A- I /CA- 2112

Set B-1 EA-1 / 2 CA- 1 / 2 . For a SPO matrix D we denote the eigenvalues of D

as 0 < Xj(D) > 2(D) :i :i. Xn(D). Define the constant 16 in Lemma 1.1 as

k (B) I Xn (B) -X I(B)

k (B) 1 X n(B) X I(B),

But

>X (B) p(B) = the spectral radius of B

z p(AC IA 12

p(C 1 /2 C 1 1 2 A)

and

x 1(B) I 1/(I1/X (B))

I 1/p(B 1 )I

I /P(A- 71 2 CA-1 1 2 )

1/P(CA-1)

I /p(C 1 / 2A IC 1 /2 )

(C -I ( 1 2 AC -'/ 2 ).

QED.

THEOREM 1.3. Let S = Cd E Rnx I and 0 d. if c is SPO then

<k(C 
112 AC1 / 2 ) -

i E -s k(C' 2 AC1 / 2 ) Hel 11E*

Proof. in reference to Lemma 1.1, we set

V =SpanICdL



W = 1w IwTd = 01

U =Rn.

It is easy to see that

U= V E W,

and

PWe = 0.
Let v E V and w E W. v E V implies that v = ACd for some , Thus

(v,w) : vTAw

= vTAw - oeAdTw. Vol > 0

vTAw -(vT(c
-1)Tw

vT(A - oC 1 )w.

Now the rest of proof is just as in Theorem 1.2, we omit the details.

QED.

If we take C = I, the identity matrix, we recover the steepest descent

method. If A has Property A, then we can take C = D- 1 , where D is the

diagonal part of the matrix A. It is well known in this case that

D-1/ 2 AD-1/2 has smaller condition (see, e.g. Young 1971, p. 214). In general,

we can take C = O- 1 , where 0 is the splitting matrix of a basic iterative

method applied to the system (1.1).

2. Convergence Analysis

We now turn to convergence analysis of Algorithm 1. Since we are

interested in the relationship between two consecutive iterates, we shall drop

the subindex k appearing in (1.2a-1.2c). One cycle of Algorithm 1 with

Galerkin approximation is as follows.

Given u( k).

1. Initialization:

w[0 ) = u(k).
2. Presmoothing:

wW = Gw ( j -1 ) - Q-1 b, j = 1.2,.-u. (2.1a)



3. Defect Computation:

d ab - Aw(u) =A(u - w(UJ)) aAe(u). (2.1 b)

4. Additive Correction:
Let a full rank matrix S e Rnxm be given.

(4.a) solve

S TASz = STd. (2.2)

(4.b) Set

E R z. (2.3)

(4.c) Set

u (k-1) W(U . e (2.4)

Define the k-th error vector as

e~k EuU k) (2.5)

It is easy to see that

E(v) G U e W (2.6)

and

e (W) =ECU) - E. (2,7)

From 01.4b) with e = e-kI1) and e ECU), we have

e (k~1) ( I- S(STASY1ST A)e(u) (2.8)

0 I S(S TAS)-'ST A)G~e W). (2.9)

B y (2. 9),
A1 / 2e(kl) = (I - A' /2S(STAS)1 STAl ' 2 )A1 / 2GvAl ' 2 A1 /2e(k).

Note that

P, = A 1/2S(ST ASflIST A'/2  (2.10)

is the orthogonal projector (with respect to the Euclidean inner product) onto
the range of A1 /2S. Hence

A 1/2 e (W) = (I _ pI )A1/2 GvA-1/2 A1/2 e(k). (2.11)

whence



iek 1 )II < 1) - PI )112 11 G'Il E ne(k)i

= 11 GUI 11 I e(k) 11  (2.12)

Recalling that G = I - Q 1A for ;N basic iteration matrix G. we immediately
have the following conclusion.

THEOREM 2.J. If 0 is symmetric and p(G) < 1I then any sequence
produced by Algorithm I with Galerkin approximation converges to the true
solution u.

Proof. By (2.12),

ie(k1  ),j E: iGt~ii E l;e(k)II E

E E

11 -Q All 7vleW 1
E E

III A1 1 2OIAI 1 lu Ui~kI
2 E

2 E

QED.

THEOREM 2.2. If we use the Gauss-Seidel method for the presmoother in
Algorithm I with Galerkin approximation, then any sec'uence produced by
Algorithm I is convergent to the true solution u.

Proof. According to a theorem in Young [1971. p. 791,
IIGIIE 'c 1 if and only if OT _ - A is SPO.

Noting (2.13) and applying the theorem to the Gauss-Seidel iteration matrix, we
ou'L'ain Theorem 2.2.

QED.

Now by (1.5a) with i7 = e(k *I ) and e = EMu, we have
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lie(k l)1l = m in ii ( u )  - ztu
E ZE Rg(s) E

< IlGUe (k) - Z11 E Vz E Rg(S). (2.14)

Inequality (2.14) suggests that we choose Rg(S) to be the subspace spanned by

{GJe(k)L. This is what we shall do in the next sectio,.

3. Reduced Basis Technique

From (2.9) and Section 1, we know that e( k 1) is the orthogonal

projection of GUe ( k) onto the Rg(S). Hence the column vectors of the matrix

S can be replaced by any basis of the range Rg(S). What matters is the

subspace spanned by the column vectors of S. It is now clear that once we

specify a subspace of Rn, Algorithm 1 is then completely defined.

From now on we shall denote one cycle of Algorithm 1 with Gaterkin

approximation by RBM(G,SR,U). Here RBM stands for the reduced basis method

and SR is the reduced subspace. Consider the following choice of SR, which

was first proposed by Porsching [19901.

Pseudoresidual Based RBM(G.SR.V):

sR S . ...1) 2). u),
where

-i u(k), j P )1,2..... v.(3.1)

Let K(V)(x,B) a span{xBx,....Bu-lx}, x E Rn,  B E Rnx n .

LEMMA 3.1. Define S(k) Gu(k) 0 O-1b - u( k). Suppose that I - G is
invertible, then

S R Span{i 6' V. )I

R

=K(u)(8(k),G) = K(tu)(8(kU,] - G).
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Proof. & j) = ei() _UJ (k)

0 1 GJ)ek) (3.2)

8(kW = G (k) .+0- 1b uWk

= GU~ W .QlAu - P)

Hence

-&fi) (I G1)(l - Gy IS(k)

0 GM + *.+ Gj)(). -'~

QED.

we remark that the condition I G is invertible holds for any completely

consistent basic iterative method. This is true, for most commonly known basic

iterative methods. S(k) is often called pseudoresidual vector. From now on,

we shat. denote the pseudoresiduat- based RBM(G,SR,Vu) as RRBM(G,SR,u).

THEOREM 3.1 [Chou and Porsching, 19881 Given a RRBM(G,SR~u) with

G I - 0-1 A defining a completely consistent presmoother. If 0 is SPD then

a) G has real eigenvalues {jl.jj j =1,2..n, which may be ordered as

b) iie(k+1 )IIE 5S r1(u)iie~k)I(E. where

T()=2 a.v/2l~1 + Bru) < 1,

a= (P - JU )1(2 - p- U1) 34

Proof. Statement (a) follows easily by noting that

A1/2GA-1/2= I - A/0II2
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Statement (b) can be proved as follows. By (2.14) with Rg(S) S

ie~k-l)ii E< IiGek - 1 i .GiS(k)II
j=0E
v-1

ii~ u e k) 1 ::4 G ~ l -G )e (k )II E
j=0

- ip(Ge~ki:E for all polynomials p(x) of deg :S u and p(1) 1

.: iAl/ 2 p(G)A-1 /2 1, 1 ie(k) 11

" p(p(A 1 1 2 GA_1 2)) I e(k)uII

" p (p(G)) iie e 1 1~ E*

Hence lie(klI)II E <emin max Ip(X I ii e(k) 11 E' Def ine

pO ) = 1 N

ri M a m i max Ip(X)I. The conclusion of the theorem now follows
deg p.:S PJ-:SX.:J.PN

POi )=1

from the well-known Chebyshev minimax theorem [Young, 1971, p. 302].
QED.

We now give a theorem that characterizes u(k+1) knowing uck).

THEOREM 3.2. Given a RRBM(GSR.u) with initial iterate u(k). Then

U(k.1) minimizes the quadratic functional F(w) a iw - u11 2 over the linear
E

manifold uck) + SR. That is

U - _WI1 < IIW - U1 E VW E U (k) + Ov)(S(k)j - G). (3.5)

Proof. By (2.14).
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1ie(k+1)tI E =min iGIYe Z1 E
ZE SR

= min iiu) - ZiI E

ZE SRE

= min 1w - wuv)

RR

Now

U

w (U) (O O1).WO

-Y (GwO- 1 ) Q . 1 b - w0-1 )) U(k) (by 2.1 a)

j1

X (I G)GJl'e(k) + U

0 ( G)Gj-l(I - G)-16(k) + U(k)
j=1

X Gi-16(k) + UM.) (3.7)
j=1

Hence w(U) -u~k) ESR

QED.

COROLLARY 3.2.1. RRBM(GSRV) with an initial iterate u~k) is
equivalent to u steps of conjugate gradient method with initial iterate P~).
provided that G = I - A.

Proof. Note that
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S R=SpanJ6k.1-G)().( - G)U 1S~~

"Span{8(k).A8(k),..,AVl (k)1

"Span~r k)Ar .. ,Av r k)J r~k b - Auk.

By (3.5),
Iu(k-l) - U1IE 11w - uIIE Vw E u(k) - K(U(r(k),A).

QED.

Corollary 3.2.1 suggests a procedure for implementing RRBM(G,SR.U) based
on Theorem 3.2. Recall that minimization of a quadratic functional induced by a
SPO matrix B over a k-plane can be achieved by minimizations of the quadratic
functional along k B-conjugate directions on the k-plane (see Hestenes, 1980. p.
101). Thus we can implement RRBM(G,SR,v) by the conjugate direction method
and avoid explicit implementation of (2.1 a). (2.1 b), (2.2)-(2.4) altogether.

4. Implementation of RRBM(G.SR~u)

Perform the following steps for n = 1..v - 1.

w (0) =u~k),
w(n+1) =w(n) - xnP(n).

() 8(0) if n = 0
S (n) . 0(p(n-1), n = 1.,..,u 1,

0( n = (8(n).Ap(n- 1) / 1 -).Ap(n- 1)).
6 (n) rw (n) Q 0 'Ib - w (n).

Xn = (p(n)OS6(n))/Cp(n),Ap(n)),
=(p(n).r(n))/(p(n).Ap(n)),

r~n) b - Aw(n),

G =I - 1A. (4.1)
Set u(kl1) = - )

Here -.,) denote the Euclidean inner product. 0(n is obtained by insisting that
(p(i).Ap(j)) = 0, i x j. The Xn is obtained as follows.
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Since w(nl) =w%-) * Xnp(n), it is not hard to see that
8 (n*1) x Xnp(n) S(n) . XnGp(n)

and

r (n - l ) - r(n) -X nAp(n). (4.2)

Furthermore, w(nl) is the minimizer along the direction p(n). Hence

(r(n-l),p(n)) = 0. This together with (4.2) implies

Xn = (r(n).p(n))/(pn),Ap(n)).

5. Relationship between RRBM(GSR.v). G = I ( -1A and
Preconditioned Conjugate Procedures

Let (I - G)u = c, where c = 0-1 b. Furthermore let I - G be

symmetrizable with a symmetrization matrix W [Hegaman and Young, 1981].

Define

4 a W(I - G)iW-I

u Wu.
b Wc.

Then L = I is called the preconditioned system with respect to "W. One can

apply conjugate gradient method to this system. Then the following formulae

are obtained [Hegeman and Young, 1981, p. 1461.

u(O) is arbitrary
U(n 1) = u(n) , Xnp(n). n= 0.1.....

8(0) . n = 0.
p(n) =(n 1)p 6-I ( n )  .O nP n 1 , n = ,2 .....

odn  =(W8(n),W(i - G)p(n-1 ))/(Wp(n-I ),W(I - G)p( n- I)), n = 1.2,....

Xn = (Wp(n),W&(n))/(Wp(n),W(I - G)p(n)), n = 0.1.2....

Here

8 (n) = Gu(n) * c - u( n ) .  (5.1)

IHEO.REM..J. Let RRBM(GSR,U) be such that G = I - 0- 1 A has a SPD
splitting matrix 0. Then RRBM(GSR,U) with an initial iterate u is



17

equivalent to the preconditioned conjugate gradient procedure (5. 1),with

= Q= /2, u( 0 ) = U and the upper limit of n = v. In particular,

RRBM(G,SRoo) is equivalent to the preconditioned conjugate gradient procedure,

provided that the same initial iterate is taken.

Proof. Compare (5.1) with (4.1). (See Luenberger (1984, p. 2453.)

QED.

We remark that if 0 is not SPD, the two methods are not equivalent. On

the other hand, (4.1) is still applicable for nonsgmmetrizable cases. For

instance. Theorem 2.2 guarantees the convergence of U RRBM(G,S Rv) when
V

G is the iteration matrix of the Gauss-Seidel smoother.

6. Contraction Numbers in the Positive Real Case

In this section we derive generic contraction numbers for a class of

additive correction methods based on orthogonal projection. The only assumption

on the range of the projector is that it contains the residual. This generalizes

the results of Section I (SPD case). However, the contraction number obtained

here is not as sharp as the earlier one. The general approach below provides

convergence results for restarted generalized conjugate gradient methods under a

variety of conditions.

Consider the problem of determining u E Rn such that

Au =f (6.1)

where A E Rnxn is invertible, and f E Rn.

Certain popular iterative methods for the solution of (6.1), such as

generalized conjugate gradient (GCG) methods (Hageman and Young (1981, p. 3393,

Elman [19821, Saad and Schultz (1985]. Vatsya [1988]) and multigrid methods

(Hackbusch (1985). McCormick [1 9P71) incorporate into their overall solution

strategies an additive correction algorithm of the following type: Given an

approximation u0 of u and an m dimensional subspace Sm C Rn:

1. Compute the residual
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r0 = f -Au o .o (6.2)

2. Observe that the error e0 a u - u0 satisfies

Ae0 = r0 . (6.3)

3. Compute an approximation e0o E S of e 0 'm 0

4. Form a corrected approximation of u.

U =U +e o" (6.4)

The key to this additive correction phase is, as in Section 1. the method of

determining e0' In many instances (for example, GCG methods) this is done

by an orthogonal projection ea onto Sm with respect to a suitably defined

inner product. Thus if F c Rnxn is a given SPD operator, and we define the

inner product

(' = (.,F.)

with induced norm 11u11F. then
eo = 1"ls eo' (6.5)

m

where 1S is the orthogonal projector of Rn onto S with respect to

mm

To obtain a more concrete representation of 17s , we assume that

Sm = Rg(S) for some S e Rnxm. Then one easily has

1"s  = S(StFS) - 1 StF. (6.6)
m

Note that by (6.5) and (6.3),

go = S(StFS)- 1 StFA-1 r0  (6.7)

Hence, the prescription (6.5) is practical only if F is of the form

F = EA (6.8)

for some E r Rn x n . If A is SPD, then an obvious and common choice of E is

the identity I (i.e. F = A). Note that in Section I we also took E = I.

In terms of the element u and u1. equation (6.5) is equivalent to the

condition
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Ilu - U1 , F- 1Iv - UllF. ' (69)
for any element v of the coset uO + Sm. Again, if A is SPD and F = A.
then ul is also the minimizer over u0 + Sm of the quadratic functional

cp(v) = (vAv) - 2(v.f).
This is the usual condition required of the classical conjugate gradient iterates

(see, for example Golub and VanLoan [1983, p. 362)) while condition (6.9) is used

in the more general case (Hageman and Young [1981, p. 342]).

In this section we give conditions under which there is a contraction
number " > 1 such that if (6.5) defines the additive correction procedure and

e1 = u = u1 , then

lie 1 11F - alleollF (6.10)
This establishes the convergence of any iterative method consisting solely of

additive corrections satisfying (6.10). Moreover, given a more general iterative

scheme which includes additive corrections for which (6.10) holds, convergence

follows whenever the other phases of an iterative step do not increase the

error. This is the case, for instance, with restarted versions of the conjugate

gradient and certain GCG methods.

A matrix B is positive real (PR) if the symmetric part of B is SPD.

With this in mind we state a theorem whose proof can be found in Chou and

Porsching (1990). The theorem provides sufficient conditions for an estimate of

the type (6.10).

THEOREM 6.1. Let u0 be given and let r O , eo, and u1 , be given by

(6.2), (6.5) and (6.4). If r0 E Sm and FA- I is PR, then the error

ei = u - ui , i = 0,1 satisfy
Ile, llF :S brF1/2 A-1 F-1/2 lleJ1F,

where ar(.) is the contraction number defined by

[1 - X 2 (B + Bt)/(4X (BtB))] 1 /2 < 1.rmin max

Now we consider the application of Theorem 6.1 to some specific types of
systems (6.1). Note that in terms of the matrix E defined by (6.8), the

hypotheses of the theorem require that E be PR and EA SPD.
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If A itself is SPD. then as previously observed, we can take F = A., In

this case the contraction number of Theorem 6.1 is

2 11/2>1 in ( A -' ) I  I _ - -- L -K'AI = - X2.ax(A-1 ) F -k2A1/2

I max
where k2(A) denotes the spectral number of A. This should be compared with

the contraction number (k2(A) - 1 )/(k 2(A) I) previously obtained by Chou and

Porsching (1989) for this special case. (See also Section 1.) It is easy to see

that r(A- I ) > (k2(A) - 1 )/(k2(A) 1), with equality if and only if A = I.

Next we consider the case when A is PR. Since At is then also PR, we

can take F = AtA. The contraction number is a'((AtA)l/ 2 A-1 (AtA)-l/ 2 ), but

this can be simplified by applying the following lemma (see Chou and Porsching

P 9901).

LEMMA 6.2. Let AP E Rnx n be respectivelyq nonsinguiar and SPD. Then

for any real number o,

1iI - d(AtP-A)1/ 2 A-IP(AtP-1A)-l/2112 = III - ,4p1/ 2AlPl"2112 .

If A is PR, we apply the lemma with P = I. The result is that the

contraction number ar((AtA)1/ 2 A-1(AtA)- 1/ 2 ) may be replaced by br(A- 1).

Finally, we turn to the generalized conjugate acceleration procedures as

presented in Hageman and Young (1981]. Let Q E Rnxn be a nonsingular

splitting or preconditioning matrix. Then (6.1) can be written as

(I - G)u b. (6.11)
where G = I - Q- 1A and b = Q-1 f. In the context of the basic iterative

method

Vk+ 1 = Gvk + b (v0 Z u0), k = 0,1 __ (6.12)

the quantity ro = b - (0 - G)u0 is known as a "pseudoresidual'. Note that

r0 = v1 - vO.

We assume (as do Hageman and Young [1981. p. 3413) that there is a matrix

Z such that Z(I - G) is SPD. If Sm is the m dimensional (Krylov) subspace

spanned by the elements ro. (I - G)ro..... and if F = Z(I - G), then our

additive correction method is equivalent to the generalized conjugate gradient
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method termed ORTHODIR by Hageman and Young. If Z is PR, then the rrethod

becomes the so-called ORTHOMIN method. It follows immediately from the

definitions of Sm and F that Theorem 6.1 applies to ORTHOMIN with the

contraction number Zr((Z(l - G))- 1 / 2 Z(Z(l - G))-1/2).

The GCW generalized conjugate gradient method (after Concus and Goulb

[1976] and Widlund [1978]) is obtained from (6.11) by choosing 0 = 1/2(A + At)
under the assumption that A is PR. In this case we can take F AtQ - 1 A and

Theorem 6.1 holds with respect to the contraction number

Z'((AtQ-lA) 1 /2 A- 1 0(AtO-1A)-l/2). By applying Lemma 6.2 with P = 0, we

see that this contraction number can be replaced by 6(Q 1 1 2 A- 1Q 1 / 2 ).

7. Hybrid Difference Methods

In this section we study hybrid difference methods for the linear convection

equation

ut + A(x)u = 0. t > 0 (7.1)

subject to the initial condition,

u(x,O) =
Here u: R - Rn . A: R -, Rnxn , 9: R - Rn are smooth functions. The matrix

function A is required to be symmetric, and there exists a constant ju such

that ul > A > 0. (The ordering here is that of symmetric matrices.) By a

hybrid diffference method we mean a method that is obtained uy forming

weighted combinations of difference quotients defining two consistent methods.

While there are many ways to select weights in the blending process, we shall

concentrate on a principle suggested by Porsching [1989] for the equation (7.1)

in the case of n = 1. His idea is to examine the continuous problem (7.1) to see

if a conservation of energy can be found. If that can be found, then one tries to

create a blending process so that a similar energy conservation holds for the

corresponding discrete case. Thus we start with problem (7.1) and derive a

conservation of weighted energy for it. Without loss of generality, we shall

assume the data A(x), 4(x) given in (7.1) is spatially periodic with period 2.

The energy associated with (7.1) is defined as
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I

12(t) f (u(xt),u(xt))dx.

0

where (...) denotes the Euclidean inner product. Note that the energy so

defined is nothing but the L2-norm of the function u(.,t) if we define

<v,w> J (v.w)dx for any v,w r L2 (0,.I).

0

It is well known that spatially periodic symmetric hyperbolic system has a

unique periodic solution (see Kreiss [1989, p. 100]). Hence using the periodicity

of u and A. it is easy to see that

<u,Axu> = -2<u,Aux>.

Thus

d<u~u> z 2<ut U>

dt t

= -2<Au ,u>
x

= <u,A u>.
x

Hence - - 12 (t) . 1Al 12 (t). which implies
dt -

12(t) :s exp~jjAxjj t)12(o).

We see that 12(t) is bounded if we are interested in seeking solution over a

finite interval (0,T]. In general, the energy is not conserved. However. the

weighted energy
I

j 2 (t) f (u(x.t),A-1 (x) u(xt))dx

0

is conserved. In fact
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j2(t) = <uA-lu> =<utA-l0 - <u,A-lut>

dt dt t t

2<u t,A- 1 u>

-2<Au ,A- 1 u>

x

0.

it is the discrete analog of the weighted energy that we shall base our weighted

selection principle on. Let the x - t plane be covered by a rectangular mesh

with uniform x and t spacing h and z. Let u be a mesh function whose

values are in Rn and whose value at the mesh (jh,mz) is denoted by vj(m).

When no confusion can arise we shall suppress the dependence on j and/or m.

For any such function we define the common x-directional differences:

x j.1

A xV (V (j 4 1  vj)/h.j

V u (u. - u. )/h,
x I j-1

A v V (U - U. )/2h,

S2 = (V -+ 2v j U + )/h ,x j~l j-l~

as well as analogous differences in the z-direction. The following identities

hold for any mesh functions u and u:

V (u,A u) = (u,8 2 V) . (V uV u), (7.2)
x x x x X

V (u,u) = (uV u) + (S-u,V u). (7.3)
x x x x

2(u,V v) = V (uu) + h(V u,V u), (7.4)
x x x x

and

A (uu) = (u,A u) + (A u.Su), (7.5a)
t t t t

2(B' u,A tu) = A t(B-1 u,v) - (B'A tu,A tU), (7.5b)

where B = B(x) e Rn xn is symmetric.

These identities can be proven first for the case n = 1 and then for the
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general n by applying the results to each component. (7.5b) follows from

(7.5a) by setting u = B-lv.

Now consider the following hybrid difference equation for (7.1):

A tv - LC1 - e)v u - eA x] = o, (7.6)t x x

where Lj(m) = Lj = A(jh) and e is a scalar mesh function of weights. To be

consistent with the continuous problem, we assume that v is L-periodic in j,

i.e. Uj+L(m) = uj(m). Equation (7.6) can be rewritten as

A u + L(V u + I Oh S2 u) =0, (7.;)

t x 2 x

which clearly reveals its antidiffusive nature when 0 > 0. In the next few

steps we shall transform (7.7) into a more amenable form from which the

discrete energy can be singled out. The idea is to treat all new terms not

present in the continuous case as parts of the 'source' term. By source term we

mean the term that tends to zero as h and z to zero.

From (7.7) we have

(L- IV,A v) + (L- u,L[V v * __ Oh &2 v]) = 0.

x 2 x

Jsing (7.2) to transform the second term, we get

2(L- u,A tv) + 2(u,V v) + V (ehv.A u) - (V (ehv),V v) = 0. (7.8)

Next we use (7.5) and (7.4) to transform the first two terms of (7.8) and the

identity V (eu) = (V e)u + se(V v) to transform the fourth term. Upon
X x x x

!earranging. we have

A t(-l u.u) + V [(uu) + (eh.A v))

Z (L-1At VA u) + h(V uS-e(V u)) - h(V u,V u) + h(V u.(V Oh)).

(7.9)

Adding h~'(Vxu.Vxu) to both sides of (7.9), where V" is a constant, we obtain

A t(L-1 v,v) + V [(uvv) + (ehv,A v)] + h '(V v.V v )tx X X X

SZ(L A tU,A u) - h(1 - a' - S-8)(V u,A u) + h(V e,uV u). (7.10)
t t x x x x x

Letting
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b = V 0 (7.11)
x

and

0 :(L'IAt ,Atu) - h(1 - br -S$')(V uVxu), (7.12)
t t x x x

we see that

A t(L 1 u. u) * V [(v,u) + (eh.A v)1 + ha(V xV ) 0 + h(b,vV x).
(7.13)

If we define the weighted energy of the method (7.6) as

L-1

P(m) = 2, ( .(m),L - I v.(m))h,
j=0

then we can use (7.1 3) to bound the energy

L-i

?(m) = 2 (u.(m),uv.(m))h.

j=0

provided that we impose proper conditions.

In the scalar case n = 1 of (7.1), Porsching (1989] has porposed two

different strategies: global weight and local weight selection procedures.

However, we have only been able to generalize the global weight procedure

to higher dimensional cases at this moment. We describe how this can be done.

Assume that the scalar weight function e is independent of the space idex j.

in this case b = 0, and if we choose a" = 0, then (7.13) reduces to

At (LI uu) + V [(.u) (ehu.A )] 0= . (7.14)

where

0: A(L At UA tu) - h(l - e)(V uV u). (7.15)

If wemultiply (7.14) by h-r, sum over 0< j L- 1. 0 < k < m, use the

periodicity of v. and note that

( =(I u ~u)ht :2(m + 1) -
j,kw t

we see that I
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T2 (m 1) j2 2() Q hz. (7.16)
j,k

Hence the weighted energy is conserved if

1,Oh z = 0. (7.17)
j,k

To enforce (7.17) we observe

-Q- = (X[V v + -- ehS2V],V u -- eh&2 u) - ((1 - e)V vV v), (7.18)
h x 2 x x 2 x x x

where X S zL/h is the mesh matrix function of "Courant numbers'. Thus

XOhz = (De2 + Ee - F)h2 z,

where

D (g 2 uXS2 u).4 I

E = (XhS 2 vV V) +( u,V V). (7.19)
x X X X

F = (XV vV v) - (V v,V v).

Hence (7.17) follows if 8 is a real root of the quadratic function

q 2e) =- D82 + Ee + F. (7.20)

If the 'Courant condition p(X) the spectral radius of zL/h < 1 holds, then

q2 (O) : (XV u.N u) - (V U.V u) < 0
X X X X -

and

q 2 0 )  W k/2 A U.X1/2AxU) > O.

Hence (7.20) has a root in the interval [0,1].

In the derivation so far, we have assumed the scalar weight function e

depends on the time-spacing, but not on the spatial-spacing. From now on, we
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further assume that e is independent of the time index k (i.e. E = constant).

In general, (7.17) can no longer hold. However, if we write (7.18) in the form
(- = (w( - I- O)V U I 1 e,& u],[( - _I e)v u. 1 9e& u) - ((i -e))v u,v 1)),
h 2 x 2 x 2 x 2 x x x

let A juz/h, and use 2ab < e 2a2  E- 2b2, then we do have
a < A j 1 J- e)vx U)112 " 211(1 -2 e)v 1111J- ex)ll u 11- A v e 112
h 2 2 x 2 x 2

e)(1 )lVx lV 12

A I(1 E)2 (1 e 2)IVx V112 + _L e2(1 E-2)1IV x l 21 _ (1 -e)IIVx11
2,

- 2 4

where 11II denotes the Euclidean norm. Thus

Ohz < q (e) 1 IVx V112 h2Z,
J J

w here

q1 e) a-A-( 2  E . E-2)e2 + [1 - E2 )A]e +(1 + e2 )A -1. (7.21)
4

Note that if 0 < A < 1 then
1 e 2

ql(0) = (1 + e 2)A - 1 < 0

and

q (1) ( C2 + e2 + E- 2 ) > 0.
1 4

Thus there is a root in (0,1].

We summarize our findings as follows

THEOREM 7.1. If A = ,t/h < i/C1 C
2) and if 6 is a positive root of

the equation qCe) = 0 in (7.21) for any e, then e e [0,1) and "5(m) T< "(O).

m>0.

THEOREM 7.2. If -L p(A) < 1 and e(m) is the root of

h

D(m'0 2 + E(m)e + F(m) = 0,
lying in [0.11. where
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(m) = ' (82 v.(m).X.(m)6 2 v.(m)),

E(m) = £ (X.(m)h8 2 U.(m),V v.(m)) + (V u.(m).V u.(m)),l x j x J xl x J

F(m) (X.(m)V u.(m), V U.(m)) - (V V(m),V U (m)),

then the weighted energy of (7. 7) is conserved, i.e.,

J(m) = T(0) for all m > 0.
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